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19. Abstract (Cont'd):

species in CN-containing flames with NO2 as the oxidizer have been
determined. Also, the dynamics of certain key propellant combustion
reactions, which involve the H atoms as reactants, have been investigated.
These results taken together represent a major advancement in our
understanding of nitramine propellant combustion chemistry.
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I.. INTRODUCTION

The gun ballistic cycle is a complex phenomenon involving features of a

number of technical disciplines including physics, chemistry, and mechanics,

amongst others. Propellant combustion chemistry plays a very important role

since it directly affects parameters such as ignition and the subsequent heat

release which, in turn, affects properties such as muzzle velocity. A

comprehensive understanding of propellant combustion chemistry has eluded the

technical community for some time due to the extremely hostile environment for
conducting chemical measurements. Currently, there is a resurgence of
activity and expectations in this area due to a number of factors. Primary

amongst these are the improvements and new, developments in highly
sophisticated diagnostic tools, such as lasers and mass spectrometers, as well

as the recent involvement of highly capable laboratories, including the Sandia

National Laboratory's Combustion Research Facility, Livermore, which is funded

through the DA/DOE Memorandum of Understanding (MOU). The conditions, thus,
exist for a concerted and comprehensive effort towards the understanding of

propellant combustion chemistry.

This report presents early results of a multi-year research program which
involves a collaboration between two universities and the DA and DOE
laboratories. Due to the current development of low vulnerability propellants
(LOVAs),. research on nitramine propellants is especially important and timely
particularly in regards to their .ignition and burn rate characteristics. Both
of these factors are directly related to the detailed chemical events involved
in the initial activation and subsequent heat-releasing steps. Our research
strategy is to study these detailed events through both theoretical and
experimental means. Specifically,-we report here the results of a
comprehensive effort in theoretical thermochemical calculations, laboratory
flame measurements, elementary reaction studies, as well as quantum chemical
models. Together, these results represent a substantial coordinated program
in the understanding of nitramine propellant combustion chemistry.

II. RESULTS AND DISCUSSION,

A s " ' 11 "

The energetics of chemical reactions and bond breaking require a COPY.
knowledge of the thermochemistry of the various gas phase molecular species INSPECrED

than can occur. In particular, the thermal stability of the short-lived,
highly reactive radical species occurring during the combustion processes must
be determined. The activation barriers of possible reaction pathways
involving these combustion intermediates also must be determined. We,

therefore, havm •pplied the theoretical quantum chemical approach known as the
BAC-MP4 method ' to calculate the thermochemical properties of the molecular
species. The approach involves the electronic structure calculation of a 0
given molecule using the Hartree-Fock method. This technique is used to 0

determine the optimum molecular geometry and harmonic oscillator vibrational
freqiuencies. Total electronic energies are then calculated at a higher level
of theory using Moller-Plesset many-body perturbation theory to fourth order
(XP4). This method extends 11artree-Fock theory to include electron
corre[ition, which is important in evaluating bond energies. We then include
bond-additive corrections (BAC) to obtain the resulting heats of formation.

JI
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Combining this information with the moments of inertia of the molecule and the
vibrational frequencies provides the thermochemical entropies and free
energies of the various combustion intermediates.

The resulting heats of formation and free energies using the BAC-MP4
method are given in Table 1 for the simplest nitramines, HNNO2 and CH3 NHNO9 ,
along with possible decomposition products and combustion intermediates. The
free energies are given at various temperatures from 300 K up to 1500 K which
encompasses the temperature range of the primary combustion zone in which the
nitramine decomposes and initial combustion processes convert the NO2 to NO.

Table 1. Calculated Heats of Formation &H* and Free Energies of
Formation AG* at Various Temperatures %sing the BAC-MP4

Method for Iarious Molecular Species Involved in the
Decomposition of Nitramines. (Energy in kcal-mol-1,

Temperature in °K)

Molecular Species 0 300 300 600 1000 1500

H NNO9  5.8 2.4 20.6 39.3 64.6 95.7
HRN(OYOH 14.8 11.5 29.4 47.6 72.2 102.6
H2NONO 23.5 20.5 37.6 55.1 78.7 102.6
R3NHNO 6,2 1,5 26.2 51,9 86.9 130.3
cOHNN(OfOH 13.6 8.9 33.3 58.6 93.0 135.6
CH3NHONO 26.7 22.4 45.9 70.1 103.0 143.7
CH3CH 2 NO 2  -19.2 -24.2 -2.5 20.0 51.1 90.0

HNO21.2 18.8 30.8 43.1 59.9 80.7
Ca3N0N 21.6 17.6 36.2 55.8 82.6 115.8
CH2NNO 36.6 33.6 50.0 66.5 88.7 116.2
H 2NN(03OH 24.5 20.8 41.3 62.5 91.0 126.3
CH3NHN(0)OH 25.2 20.0 47.4 75.'7 114.1 161.6
CH3NHNHO 40.4 35.5 57.9 81.3 113.6 153.7
NH 2NHO 37.9 34.6 50.3 66.6 89.0 116.6

N020.4 19.5 24.9 30.2 37.3 45.9
CýO0 -25.0 -25.9 -24.5 -22.6 -19.4 -14.9
H2 A -57.1 -57.8 -54.7 -51.2 -~62 -39.5
HCN 32.4 32.2 29.8 27.4 24.4 20.8
NO2  7.2 6.5 10.9 15.4 21.5 29.0
HONO -17.9 -19.5 -11.3 -2.9 8.6 22.7
NH 2  46.8 46.1 48.3 50.9 54.6 59.5
NO 20.8 20.8 20.3 19.8 19.1 18.2
H 51.6 52.1 48.5 44.8 39.5 32.5
OH 9.5 9.5 8.7 7.9 7.0 5.9
HNO 27.0 26.3 29.3 32.7 37.5 43.6
CH3NH 47.7 45.0 52.7 61.2 73.8 90.0

CH35.1 34.4 34.6 35.1 36.3 38.3
H ýN 57.6 56.7 57.2 58.0 59.7 62.0
CiL NN02  59.7 56.0 75.7 96.0 123.4 157.2
HN JO0 65.1 62.9 75.7 88.7 105.9 126.9
CH Ni0 55.3 52.3 66.2 80.9 101.2 126.4
HNR0 57.4 55.9 63.2 70.5 80.3 92.4
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Using the BAC-MP4 method, one can also calculate transition state

structures (saddle points on the potential energy surface) corresponding to

bottlenecks in the reaction pathways. The resulting BAC-MP4 energies provide

activation energies for reaction. The decomposition pathways for the' reaction

of H atom with H2 NNO 2 are shown in Figure 1.

Reaction of H2 NN0 2 + H

80 -

H'NNN N

H60

E 40 -HNN ÷+ OH
H'

o-4•_ ;:--"=: HONO'+ NH2
>v 20 HNN0

H" "OH • NH2 OH+ NO
e

0 - HNNO + H 2 0
NH37 + N0 2

-20
Reaction Coordinate Diagram

Figure 1. Calculated Reaction Pathways for the Reaction of NH2 NO2
+ H Products, Based on BAC-MP4 Heats of Formation at O°K for

Stable Species and Transition State Activated Complexes.

Vertical energy scale is in kcal-mol.

The results of these calculations indicate that the weakest bond in the
nitramines is the N-NO 2 bond, with a bond energy of 48-49 kcal-mol- . While

there is considerable variation in the N-N bond energy proposed in the
literature, our value is in good agreement the estimates of Shaw and
Walker. Rearrangement of the molecule can also occur, leading to
decomposition of the nitramine molecule. However, such elimination processes
still have large activation energies of greater than 40 kcal-mol-. The HONO
elimination from methyl-nitramine, CH3 NHNO 2 , is calculated to be
4! kcal-mol-. Thus, the unimolecular decomposition of nitramines involves
large energy barriers.

Meanwhile, the combustion process above the surface of the propellant is
producing radical species as combustion intermediates. In particular, one
such species is the hydrogen atom. In Figure 1, we consider the chemical

7 BEST AVAILABLE COPY
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reaction of hydrogen atom with the nitramine, H2 NNO 2 . One can see from the
figure that the hydrogen atom can attack the oxygen of the nitro group,
producing an energetically unstable intermediate which can decompose by
scissioning either the N-N bond or the N-O bond, i.e.,

H2 NNO 2 + H + H2 N + HONO AE = 5 kcal-mol-I AH = -28 kcal-mol-I (1)

H2 NNO 2 + H + H2 NNO + OH AE = 5 kcal-mol-I AH = -27 kcal-mol-I (2)

where AE is the activation energy of reaction and AH is the enthalpy of
reaction. In both cases, the reaction is exothermic (28 and 27 kcal-mgl-
respectively) and the required activation energy is small (5 kcal-mol- ),
corresponding to the energy barrier for H atom attacking the nitro. group.
Thus, we see that the H atoms provide an alternative, low activation energy
reaction pathway for the decomposition of nitramines. 5

Having broken the N-N bond (either by unimolecular decomposition from the
heat generated in the primary flame zone or from reaction With H atoms
generated in the primary flame zone), the remaining bond energies are
significantly reduced. In particular, jhe C-N bond energy is reduced from 80-
85 kcal-mol- to less than 20 kcal-mol- . Thus, once the NO2 group has been
removed, the HMX or RDX molecule will continue to fall apart to form H CNNO2's
and H2 CN. The H2 CNNO 2 molecule, whose N-N bond energy is 28 kcal-mol-9, wifl
break apart *to form more H2 CN and NO2 . The H2 CN will decompose in the primary
flame zone to form HCN + H, i.e.,

H2 CN + HCN + H AE = 27 kcal-mol- 1  AH = 26 kcal-mol-I (3)

Thus, we see that chemical reaction processes occurring in the primary flame
zone of the nitramine combustion can produce a source of H radicals which can
aid in the initial decomposition step of the combustion process.. Since the
concentration of H atoms consumed in Reactions (I) and (2) are regenerated by
Reaction (3), the H atoms serve ai an autocatalytic species in ihe combustion
process aiding the decomposition. Consistent with this mechanism, the
calculations support experimental data 3 that indicate that HCN and NO2 should
be important gas phase combustion species in burning of nitramines.

Meanwhile, Reaction (2) leads to nitrosamines, which have been observed
at, intermediate products in HMX and RDX decomposition, and to OH radicals.
mie nitrosamines can lead to N2 0 formation, while OH can react with the
nitramines and intermediate products through abstraction and addition reaction
pathways to form H2 CO. Thus, H2 CO and N2 0 could also be important gas phase
combustion species.

The theoretical BAC-MP4 thermochemical calculations have indicated an
important role that H atoms Can play in the combustion of nitramines.
However, the combustion process is very complicated, with many other radical
species being generated in the flame zones. Also, the H atoms and other
radicals can react further Vith the combustion intermediates. For instance, H
atoms react very rapidly with NO2 to form NO + OH. The H atom can react with
the NO, producing the secondary tlame. However, this reaction is very
endothermic,

8 BEST AVAILABLE COPY



NO + 11 + OH + N AH - 50 kcal-mol-' (4)

NO + H + NHl + 0 AH = 73 kcal-mol-1 (5)

and competing reactions can inhibit this secondary flame. Thus, one needs to

know the various reaction mechanisms which can occur in the flame and the

resulting combustion intermediate species concentration in the flame. The

experimental and theoretical techniques discussed next provide needed

information regarding these processes.

B. Laboratory Flame Measurements

We have initiated studies of a series of low pressure flames related to

the combustion of the gas phase species above burning nitramines. These

species can be broadly classified as fuels or oxidizers. The fuels include

HCN and H122CO, and the oxidizers include NO, NO2 , and N 0. Our initial studies

are centered on the combustion of HCN and NO . This cnoice is motivated by

the theoretical results that show these species could be important products of

the high temperatue5 pyrolysis of the solid nitramines, as well as by previous

experimental work.>"

Our studies use the same techniques and methods successfully employed

previously to study low pressure Ag- 9 2 -O 2 flames doped with various

combinations of C2 H2 , HCN, and NO. ' These studies are made on flames

operated at low pressure near the blow-off limit in order to minimize the heat

transferred from the flame to its surroundings. This situation allows model

calculations to be more easily compared to the experimental data. The primary

objective of these studies is to determine the chemical mechanism of the

flames under investigation; that is, to determine which chemical reactions are

the most important in the process of converting reactants into products.

Because of the large number of species and reactions involved in the

combustion-process, the combustion mechanism is elucidated by making detailed

flame model calculation that are then compared to the measured temperature and

species profiles. Reaction rate constants are obtained from the literature or
are estimated with the aid of theoretical thermochemical calculations if

literature values are not available. These estimates are revised, within

reasonable limits, until the results of the model calculations agree with the

observed datn.

The experimentat apparatus includes! (1) a premixed, tlat filame burner
having a 9.7-cm diameter porous surface and operated at 25-Torr ambient

pressure, (2) a microprobe sampling mass spectrometer to measure the

concentration of abundant stable species, (3) a laser induced fluorescence
(LIF) spectrometer to measure the concentrations of CN and CH radicals and to
measure the CN rotational temperature, and (4) a Fourier transform infrared
spectrometer (FTIR) to measure concentrations of stable species and abundant
free radicals. The burner is translated vertically in the vacuum housing in
order to obtain temperature and species profiles. The position of the burner
relative to the analytical probes is known to within 0.02 cm.

The mass spectrometer system is mounted on top of the burner vacuum
housing to minimize the distance between the burner and the spectrometer. The
sampling system consists of a 1-cm quartz probe drawn to a tip having a
0.01-cm diameter opening. This probe is pumped by an auxiliary vacuum pump
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that maintains the probe pressure near 1.5 Torr. The combustion gases
entering the probe are directed through a microchannel plate, a chopper, a

skimmer and into the ionization region of a quadrupole mass spectrometer. The

ion signal is then detected with a lock-in amplifier. This discriminates
against gases trapped in the mass spectrometer vacuum housing. The mass

spectrometer sampling system has a lower sensitivity limit of 10-50 ppm with a

typical relative accuracy of 1% for concentrations about 1000 ppm. The
sensitivity of the mass spectrometer is calibrated for each species to be
measured immediately before acquiring the flame profile.

The LIF spectrometer is composed of a modified dye laser pumped by a cw,
argon ion laser. The dye laser uses polyphenyl-l dye and operates in the 350-

400-nm region. CN concentration profiles are measured by scanning over the
B-X, Rl(14) and R2 (14) transitions twice and averaging their intensities. The
same procedure is used for measuring relative CH concentrations except that
the B-X, Q1 (5) and Q2 (5) transitions are used. The flame temperature profile
is obtained from the rotational temperature of the CN which is determined from
the R1., R2 rovibrational ban I contour. The FTIR is a commercial instrument and
operates in the 400-4000-cm region. The maximum resolution is 0.004 cm

Typical data obtained with the mass spectrometer system is shown in
Figure 2 which shows stable species profiles for a C2 N2 -N0 2 flame. This flame
represents a subset of nitramine combustion chemistry, addressing those
reactions involving primarily CN radicals in the absence of hydrogen. The
data show that NO is produced as an intermediate (reaching a peak value at
1.5 cm) and that C2 N2 is not depleted to any great extent until the NO is
consumed. We are presently developing a chemical kinetic model that will aid
in interpreting these data and that will help to identify the most important
reactions occurring in the flame. However, even without the model it appears
that NO produced from NO2 plays a major role in the oxidation of C2 N2 .

The C N -NO2 flame has several unusual characteristics. It produces
bright visible emission in three distinctly colored bands: yellow (0.7-
0.9 cm), blue (0.9-1.1 cm),. and pink (1.1-2.4 cm).. The spatial relationship
of these bands are indicated in Figure 3 which is a black and white photograph
of the flame. Premixed flames generally do not show this banded structure
because the fuel and oxidizer are thoroughly mixed prior to combustion, and
thus, there are no large concentration gradients to produce a banded flame
structure. An additional unusual aspect of this flame is that there are no
hydrogen-containing free radicals to support the combustion process as there
are in most other flames.

C. Elementary Reaction Studies

In order to gain some insight into the reaction of hydrogen atoms with
propellants, we have investigated three prototype elementary reactions under
low pressure single-collision conditions:

H + NO2 + OH + NO, (6)

H + C113N0 2 -P Productn, (7)

H + CH3 ONO + Products. (8)

10



CYANOGEN - NITROGEN DIOXIDE FLAME
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Figure 2. Stable Species Profiles of a Low Pressure C2 N2 -NO2 Flame
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Figure 3. Schematic 'Diagram of a Low Pressure .C2 N2 /NO2 Fla~ne,
Colors of the three emitting regions are indicated.
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The nascent ORl product internal energy distribution has been Megsured for
Reaction (6) in syweifl laboratories by uv laser fluorescence ', and infrared
chemiluminescence b detection. The product translational energy
distributiontha¶ also been measured in crossed beam scattering
experiments.|13 The OH internal energy and the product recoil energy
account for about 68% of the total energy, the remainder presumably residing
in internal excitation of the NO product. In view of the importance of this
reaction, we have undertaken to measure its internal energy distribution by uv
laser fluorescence.

An important feature of Reactions (7) and (8) is that there are a number
of different exothermic reaction pathways available. We have studied these
reactions by laser fluorescence detection in order to estimate product
internal energy distributions and branching ratios, which are extremely
uncertain. It should be noted that, while this detection technique is very
convenient and sensitive, it is not universally applicable. We apply it here
to Ehe detection of OH, CH3 0, and NO.

These studies were carried out in a beam-static gas scattering
arrangement at total pressures of 2 mTorr or less. A beam of atomic hydrogen,
prepared by dissociation of H2 in a microwave cavity, passes through an
orifice into a reaction chamber to which the reaction partner is added.
Reaction products were monitored by laser fluorescence excitation with the
frequency doubled and/or mixed output of a Nd:YAG pumped dye laser.

The apparatus was first tested by observing the OH product in the grgugd
v-O vibrational level and comparing with the previously reported results. I'
In agreement with the literature, we find nascent OH products peaked near the
rotational quantum number N=14, but most of the OH detected was collisionally
relaxed to low N levels, presumably because oý collisions with the walls.
Relaxation effects are much less important for vibrationally excited products
since wall collisions efficiently quench vibrational energy.

We were also able to detect OH product Erom the W + CH3 NO2 reaction.
Because of the small rate constant for this reaction, the fluorescence
signal was considerably smaller than for Reaction (6). The detection of an
albeit weak OH signal from this relatively slow reaction nevertheless implies
that the formation of OH is a significant reactive pathway. This is
consistent with the expectation that the hydrogen will interact most strongly
with a lone pair of an oxygen atom of the CH3 NO2 reagent.

It is interesting to note that only low N OH rotational levels are
populated in Reaction (7), and moreover only the lower 43/2 spin component is
present. It is unlikely that the presence of only one spin component is an
artifact of possible collisional relaxation, but rather must reflect the
nascent product distribution. The observed small degree of product rotational
excitation for this reaction is similar to that observel 5 previously in the
reaction of oxygen atoms with a number of hydrocarbons. This small
degree of rotational excitation has been interpreted as showing that reaction
occurs when the oxygen atom approaches collincar to a C-H bond. In these
reactions, as in Reaction (7), a significant preference for formation of the
lower O spin component was observed. This can be explained by assuming that
the reaction proceeds adigbatically along the lowest-energy potential surface,
which correlates with Oil 1113/2 products.

12 BEST AVAILABLE COPY



Reaction (8) was also studied, but no laser fluorescence signals due to
reaction products (OH, C113 0) could be detected. However, a weak unstructured
fluorescence signal could be observed with just the methyl nitrite reagent
present. On the basis of an earlier study of the uv photolysis of methyl
nitrite,17 this sigLaal is assigned as a two-step process involving CH3 ONO
photolysis and subsequent fluorescence excitation of CH3 0 fragment. This
background signal could be obscuring the observation of reaction products.

The NO product in the v=0 vibrational level from the H + NO2 reaction was
also observed. Figure 4 shows a fluorescence excitation spectrum of the A-X
(0,0) band near 226 nm. Comparison of this spectrum with that for a room
temperature NO sample indicates that the product state distribution is
remarkably close to a 300 K Boltzmann distribution or, more likely, that there
is considerable collisional relaxation of the NO product. However, from
comparison of the relative intensities of the P1 and Q, vs. P2 and 012 band
heads we find that the 1[1/2 and .13(32 spin components are equally populated
in the reaction. This lack of spin equilibrium is consistent with the known
order of magnitude diffe[nS in spin-changing vs. spin-conserving inelastic
collisions involving NO. in

I I I I I p I I I I I , I I I

os2, 2 4 6 8 10 12 14 16

R2 • ' l o ...... I'" ' I I I 1 I 16 2 0
_2_02 4 6 8 102 16 lB 20 2

02*012 ...... I R1*R215 321 62468b24 16eo,, b 'o ' 1 6'22 24' 6 2'8

*PI2lbO I 14 ' i8 20 22

64 2
012 16 2

l I I I I II

44100 44200 44300 44400 cmni
laser wovenumber

Figure 4. Excitation Spectrum of NO Formed in the H + NO2 Reaction.
The NO2 gas pressure was 0.15 mTorr. Lines of the NO A-X (0,0)

band are identified.

The observation of equal population of the spin-orbit levels of both OH
(X2 1) previously 8 ' 9 and NO ('X2 11) in the present work implies that there is no
preferential orientation of the spin angular momentum with respect to the
plane of rotation. While Reaction (6) il believed to proceed through an
intermediate 1IOUO complex on the lowest A' surface, nonadiabatic processes
will mix this surface with the other exit channel surfaces (8 in all) as their
energien asymptotically approach one another. The presence of a significant
a•lvtint of product rotntional excitation suggests that this mixing will be
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efficient, leading to a statistical distribution of spin states in both

reaction products.

D. Quantum Chemical Models

Collaborative theoretical work has concentrated on inelastic H + NO
collisions, which have been studied experimentally by Leone and coworkers.

This process may well play an important role in the observed rapid relaxation

of the NO poduct in the H + RNO2 reactions reported here. Recently, Colton

and Schatz haye carried out quasiclassical trajectory studies of collisions

of H with NO (X i1) at translational eyergils,ofll-3 sV, using semi-empirical
fits to the four potential surfaces ( A', A , A , A") which correlate with

the lowest energy H + NO asymptote. Unfortunately, a classical trajectory

study can give no information either on the aspects of the collision dynamics

which reflect the open-shell nature of the collision partners, namely to what

extent will energy transfer depend on the fine-structure level23 of the NO, or
on quantum interference between the four surfaces.

Collision-induced transitions between the multiplet and/or rotational
levels of NO scattered by an atomic target arise because the orbital motion of
the collision partners couples with the nuclear rotational, electronic
orbital, or electronic spin angular momenta of the molecule. An additional
degree of complexity is introduced when the target is also an open-shell
species, because potential iurfaces of moe than one spin multiplicity will
contribute to the collision dynamics. 24' A particularly intriguing question
is the extent to which the correlation of the nonzero spin of the target with
the spin of the molecule will resul 6 in a breakdown of the propensity rules
which we have deried theoretically and which have been observed
experimentallyz'' for collisions of molecules in I1 electronic states with
closed-shell atoms.

We have begun the divelopment of the quantum description of the collision
of a 211 molecule with a S atom. A first key step involves projection of the
adiabatic electrostatic interaction potential onto the diabatiq 4molecular and
atomic electronic spin subspaces by use of a tensor expansion. It 2 s also
necessary to make use of the recoupling scheme of Corey and McCourt, and to

treat the rotcr molecular rotational wavefunctions in Hund's case (b) rather
than case (a).23

Even at moderate energies the motion of the light H atom will be rapid
enough to justify use of the infinite-order-sudden (lOS) approximation.2gj0-32

In this limit the rotational motion of the NO molecule is considered to be
effectively frozen during the collision. The collision cross bections can
then be written as integrals of a sudden transition operator over the H-NO
orientation angle. The electrostatic potentials of Colton and Schatz 2 2 can be
used directly, without re-expansion in a series involving Legendre polynomNals
as would be necessary in a full close-coupled treatment of the collision.
Application of the recoupling scheme to NO (X R) will necessitate ignoring
the energy splitting between the two spin-orbit manifolds, which certainly is
entirely consistent with the lOS approximation. We have already begun
numerical calculations to investigate the validity of this approximation for
the simpler case of collisions of NO (X2 11) with Ar.
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III. CONCLUSION

The multi-laboratory collaboration on nilrainine propellant combustion
chemistry is yielding significant new results in both the theoretical and
experimental areas. On the theoretical side, great progress has been made in
the calculation of tharmochemical properties of nitramine decomposition
products and combustion intermediates using ab initio quantum chemical
methods. This work supports the evidence that HCN and NO2 play a major role
in propellant flames and specifies pathways for the formation of other
important reactive species such as H2 CO and N2 0. In addition to the
thermochemical calculations, a quantum chemical framework has been set up to
describe the details of collisional interactions between NO molecules and H
atoms.

On the experimental side, the profiles of chemical species in the
C2 N2/NO2 flame have indicated the importance of NO in the oxidation of the
fuel molecules. Also, detailed elementary reaction studies have yielded
important information concerning the dynamics of key propellant combustion
reactions involving the H atom and N02 -containing oxidizers. In summary,
these results represent major progress in the understanding of propellant
combustion chemistry.
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data, procedure, source of ideas, etc.)

S. Has the information in this report led to any quantitative savings as far
as man-hours or dollars saved, operating costs avoided or efficiencies achieved,
etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future
reports? (Indicate changes to organization, technical content, format, etc.)

Name

CURRET Organization
ADDRESS MAdress

City, State, Zip

7. If indicating a Change of Address or Address Correction, please provide the
New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name

OLA Organization

Address

City, State, Zip

(3.i..e this sheet, fold as indicated, staple or tape closed, and mail.)
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